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Abstract

A physically motivated modeling process for the prediction of noise radiated from rolling tires is presented. The overall
simulation procedure is based on a decomposition into the nonlinear stationary rolling case, the eigenvalue analysis in the
deformed state, and the calculation of the noise radiation including a modal superposition approach with an excitation by
deterministic functions. The simulations cover detailed finite element models of the tire/road system. This allows for
various parameter studies with respect to noise reduction potentials. The new model is applied to representative numerical
examples, and its accuracy as well as its efficiency are discussed.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Regarding the reduction of traffic noise, significant progress has been achieved with respect to the sound
radiation of the powertrain of vehicles. As a consequence, the rolling noise of tires has become the main source
at speeds above 40 km/h for passenger cars and 60 km/h for trucks. Hence, no significant reduction of the
noise radiated from vehicles seems possible without decreasing the tire/road noise.

In order to support the efficient design of low noise tires as well as roads, the development of simulation
tools, employing virtual prototypes of the tire/road system, is essential. However, currently no physically
based and validated model exists that may be used to determine the sound radiation from rolling vehicle tires
with reasonable accuracy in the relevant frequency range. This is primarily due to the complexity of the tire
structure and the various effects contributing to the overall noise. A comprehensive study including
measurements, statistics and simulations of both tires and roads as well as tire/road systems can be found in
Ref. [1]. Models including empirical and structural approaches are presented in the works [2—4], where the tire
is represented by plate or shell structures. These simplifications include the benefit of a rather small
computational effort but obviously limit the predictions regarding the influence of sophisticated
constructional components of modern tires.

A state-of-the-art simulation tool for static and stationary rolling analysis of rolling tires is the finite element
method. In this contribution, a special Arbitrary Lagrangian Eulerian (ALE) approach is used to describe
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rolling bodies in a relative kinematic sense as presented in Ref. [S]. Hence, any grade of detail is possible for
the discretization of the structure, limited only by the computational equipment. For example, the influence of
cord angles in composite layers of the tire, of the inflation, or of the rotational speed on the deflection can be
examined with arbitrary accuracy.

The dynamic behavior of tires is modeled within a modal superposition approach assuming small
vibrational amplitudes. Methods for the solution of the underlying complex valued eigenproblems can be
found in Refs. [6,7]. The cost of the eigenvalue analysis is determined by the matrices provided by the finite
element method. Additional effort arises from the necessity of using complex numbers and solving large-scale
systems of linear equations. For the excitation of the system, measurements of real road textures are analyzed
resulting in multi-frequency harmonic functions. These are the cause for the operational vibration of the tire
on a specific road.

The computations for the acoustic part of the overall model are based on a combined finite/infinite element
approach. An optimized variant [8] of the so-called mapped wave envelope elements [9], also known as
Astley—Leis elements, is employed. The optimized infinite elements allow for a stable and extremely efficient
solution process. This is essential in the case of a simulation of the overall tire/road noise for certain states of
rolling, where computations for numerous frequency steps have to be carried out. An assessment of the
efficiency and robustness of the infinite elements employed in this contribution is given in Ref. [10]. Meanwhile,
these improved infinite elements are generally available as part of the high-performance FE-library libMesh [11].

The current paper is organized as follows: first, the overall model and the underlying computational strategy
is outlined. Subsequently, terse descriptions of the employed numerical methods for the structural and the
acoustic analyses are given. Since the computational costs of the underlying methods are somewhat crucial for
the overall simulation procedure, some emphasis is given to the efficiency of the numerical approaches. Then,
the applicability of the numerical model for simulating the tire/road noise is demonstrated and discussed based
on representative numerical examples. Final remarks are given in the conclusions.

2. Preliminary remarks on the finite element model for tire/road noise

Despite the fast increase of computer performance over the last decades, it is still not possible to simulate
the complete nonlinear dynamic behavior of rolling tires and the subsequent sound radiation directly.
A significant reduction of the computational cost can be achieved by employing a modal superposition
technique. This leads to a computational strategy, where the tire/road noise is analyzed in several subsequent
steps. First, in a nonlinear steady-state rolling analysis the deformation of the tire in contact with a plane road
is computed using finite elements within an ALE formulation, including effects of inertia due to rotation and
pressure loads due to the inflation. The next step is a complex eigenvalue analysis of the gyroscopic system.
The homogeneous equation of motion is transformed into a quadratic eigenvalue problem, which yields
complex eigenvectors interpreted as traveling waves rather than standing vibrations, while the rotational speed
influences the eigenvalues. Then a modal superposition is performed, resulting in the dynamic response of the
system caused by the excitation. The tire is excited by the roughness of the road surface. This is taken into
account in the contact region using a deterministic description by means of a discrete Fourier analysis of
texture measurements, yielding a frequency spectrum with amplitudes and corresponding phase displace-
ments. The meaningful parts of the spectrum are extracted and used for the excitation function.

After the determination of the tire dynamics, the sound radiation is computed in the acoustic part of the
model. In this step, the vibrations on the tire surface are extracted and the normal velocity data are taken as
boundary conditions for the acoustic simulations. Note that the structural dynamics is described a priori in
spatially fixed coordinates. This enables a rather straightforward transfer of the vibration data onto the
acoustic fluid domain. In addition, the acoustic properties of the road surface may also be considered by
means of admittance or impedance boundary conditions.

Summarizing, the following steps are performed in order to simulate the noise generated and radiated by
rolling tires:

e computation of the nonlinear stationary rolling process,
e cigenvalue analysis for the steady state of the rolling tire,
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o determination of the excitation due to the texture of the road surface,
e computation of the operational vibrations with modal superposition, and
® noise radiation analysis.

The present work describes a first step in the physically based finite element analysis of the high-frequency
dynamics of rolling tires. A slick tire is modeled, because tread tires may only be modeled approxi-
mately within the ALE framework that is used here. However, these investigations already enable
studies on the interaction of the tire and the road with respect to principle constructive parameters. At the
current stage, the understanding of basic mechanisms is emphasized. Further refinement of the model, e.g.
considering tractive rolling with partial slip or frequency dependent material parameters, is intended for the
near future.

3. Governing relations
3.1. Stationary rolling

A special ALE formulation is used for the stationary description of rolling. In Fig. 1 the decomposition of
motion used in the ALE description is depicted. The mapping between the configurations splits into pure rigid
body motion y and deformation ¢, here applied to the gradient of deformation for example,

6x_6x al_A -

F=x=gx=Fk o

with the benefit of having a deformable but fixed finite element mesh, while the material is rotating inside. The
material time derivative is split additively into relative and convective part,

d) _ 20

— =—+ Grad - w, 2

dr ot @
with the guiding velocity w. Since the relative part 9()/0t disappears for stationary processes, these can be
described in a time independent manner.

The equation of motion of the continuum in conjunction with laws for deformation and constitutive
description of material behavior as well as boundary conditions for traction and displacement provides a
boundary value problem. This is iteratively solved in a weak formulation with consistent linearization and
discretization by finite elements. A detailed description of the theory can be found in Ref. [5]. Finally,
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Fig. 1. Introducing rotated reference configuration.
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the equation

(IK _ W)A(P _ I+Ati\,e T ti\,i _ ti\,a, (3)

. . . . . . Aty . .1
with the stiffness matrix ‘K, the ALE-inertia matrix W and forces of external loads o [fe, ALE-inertia Ifi and
internal stresses f_ has to be solved for the incremental displacement A by a Newton—Raphson scheme for
the stationary rolling step including a contact formulation for the structure with a road.

3.2. Eigenvalue analysis

The eigendynamics is described by the homogenous finite element equation of motion
M +Gp+Kp=0, K=K-W, G=-G', 4)

with the mass matrix M, gyroscopic matrix G and vibrations ¢ measured relative to the deformation state of
stationary rolling. The harmonic ansatz

p=zc", Ll=io (5)
yields a quadratic eigenvalue problem of the form
Q)z=(*M + )G +K)z = 0. (6)
Since the gyroscopic matrix is skew-symmetric, it is convenient to use the following linearization in the state
space
iG K M 0 Wz
2 . _|)z=0, z= , %
K 0 0 K z

to maintain the hermitian properties of the quadratic eigenvalue problem in the generalized linear eigenvalue
problem. This is solved with the implicitly restarted Arnoldi method available with the large-scale eigenvalue
solver package ARPACK [6]. Keeping the hermitian symmetry reduces the storage requirements for the
matrices and their preconditioners and produces equivalence of left and right eigenvectors, which is also a
benefit in the sense of data handling as well as less computational cost.

For the solution of the eigenproblem the so called shift-invert mode is used. Most solution methods for
eigenproblems converge to the extremal eigenvalues. If the eigenproblem is inverted, the smallest eigenvalues
in the vicinity of zero are computed. The shift-invert mode enhances this in the way that the eigenvalues near a
given shift are calculated. Thus, this is an effective method in order to compute the eigenvalues and
eigenvectors in the frequency range that is of importance for tire/road systems.

During the iterative process of the implicitly restarted Arnoldi method with the given shift value ¢ the linear

system of equations
X1 b]

has to be solved for the vector x multiple times. Regarding the memory requirements, the solution of Eq. (8)
with twice the dimension of the original system in Eq. (7) seems inefficient, especially because the complex
numbers need twice the storage of real numbers. Therefore, the system is transformed back to the quadratic
form, resulting in the following two operations with less computational cost:

x> = Q7 ![Mb; — (iG — 6M)K ™ 'b,], 9)

iG-—oM K

K —oK

X| = K_lbz + 0Xy. (10)

Next, an incomplete Cholesky factorization is used as preconditioner for the matrices Q and K in conjunction
with a iterative method like BICGSTAB. This is an effective way for the solution of the linear system of
equations, since the preconditioner for the stiffness matrix K is always the same, while the preconditioner for
the quadratic form Q only has to be recalculated when a new shift ¢ is applied. Regarding the overall
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computational cost, the solution of the linear system of Egs. (9) and (10) takes the largest portion of the total
computation time, varying from 50% to 95% depending on the problem size and the size of the subspace
chosen for the eigenvalue analysis. Also, most of the memory is required for preconditioners due to the fill-in
of sparse matrix entries during incomplete Cholesky factorization. Empirical studies have shown that for
practical purposes a preconditioner with good convergence has a fill-in factor of 5-20, resulting in memory
requirements of some gigabytes for common tire models.

3.3. Excitation caused by road texture

Filtering and discrete Fourier transformation is applied to digitized data of road surfaces resulting in
harmonic excitation functions,

u(t) = Z ﬁ/ei(w’+u’fxt)~ (11)
J

These displacements are applied to the contact nodes of the previously calculated modal model for each
separate amplitude vector w; and excitation frequency w;*. The phase angle ¢; of the contact nodes is
determined by the rotational speed of the tire in circumferential direction and randomly shifted in lateral
directions in the footprint. With the stiffness related to the contact patch K., a corresponding force vector f(¢)
is applied to the right-hand side of the equation of motion,

Mé + G + K¢ = £(1), £(r) = —Keu(o). (12)
Again, the usage of the equivalent linearized form
iG K|. [M 0]. [f() __4';
K 0 d’_[o f(}d’_[o}’ 4’_[¢]’ (13)

decouples the system with the modal matrix Z, the diagonal matrix of eigenvalues © and the generalized
coordinates ¢,

i _ . [29
b=> 24, L= { 7 } Q = diag(w)) (14)
J

yielding first-order differential equations

0iGi; — g =f;] (15)

Furthermore, a harmonic ansatz is taken for the generalized coordinates to get the stationary solution. With
the properties of orthogonality of the linear eigenproblem (7) one obtains

d; = (i@ — 0P 21 felorter (16)
and for the operational vibration of the tire with modal superposition
d(1) =D Z(Q — i)~ QZ e T, (17)
J
To overcome the resonance case, a reasonable small value é can be used as virtual damping, avoiding
numerical problems when inverting the diagonal matrix
(Q — i)~ — (=0l +iQ — i)~ (18)

This damping is mathematically founded because negative real parts appear in the eigenvalues of damped
structural systems, when the eigenproblem is stable.

Finally, the structural data, namely geometry, displacements and eigenvectors of the tire surface as well as
the generalized coordinates are used for the sound radiation analysis.
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Fig. 2. Geometry of the exterior acoustic problem.

3.4. Exterior boundary value problem for the Helmholtz equation

The starting point for the noise radiation analysis is the exterior boundary value problem illustrated in
Fig. 2. Consider a three-dimensional vibrating body B in a half-space bounded by the plane Sg. The surface of
B is denoted by Sy. The exterior domain Q is decomposed into an interior and exterior part through the
envelope I'. The time-harmonic pressure p in €; and Q, is governed by the Helmholtz equation

Ap+1p =0, (19)

where k = w/c is the wavenumber, and o is the angular frequency. The normal vector n of the surface
S = Sy U Sy points into the domain Q. Corresponding time-harmonic boundary conditions are prescribed on
S, namely Neumann and Robin boundary conditions, respectively,

v, =05 on Sy, (20)
. 1
U—=oz— on Sg, (21)
P pe

where v, is the normal velocity, ¢ is the wave speed, p is the fluid density and o is an absorption coefficient
normal to the surface. To enforce uniqueness of solutions for Eq. (19) on Q with boundary conditions given in
Eqgs. (20) and (21), a radiation condition is enforced on the artificial boundary I'y, which is supposed to limit
the exterior domain Q,

ikp + % = o(X~“=V72) on Iy, (22)

where d = 3 is the spatial dimension of the problem. In the limit X — oo the domain Q, renders unbounded,
and Eq. (22) will lead to the Sommerfeld condition.

Note, that the most general statement would also consider Dirichlet boundary conditions p = p°. However,
since these conditions rarely occur for practical problems of acoustic radiation and scattering, they are not
considered here.

3.5. Weak formulation of the Helmholtz problem

The weak formulation of the boundary value problem given by Eqgs. (19)-(22) may be derived using a
weighted residual technique or by means of variational formulations. Introducing test functions § and trial
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functions p, and employing Green’s theorem, the variational form of Eqs. (19)—(22) reads
/(Vp VG —kpg)dV — / ipwv,pgdS
Q Sy

- / ikopgdS + [ (ikpg — o(X~“=D/2))dS = 0. (23)
SR FX

The infinite element formulation employed here is based on the Astley—Leis framework, where the test trial

functions, taken from weighted Sobolev spaces, satisfy the radiation condition in Eq. (22). Thus, the last

integral in Eq. (23) may be dropped and the weak form of Egs. (19)—(22) is finally given by

/Q<Vp~vq—k2pq)dV—/

Sy

ipwvipgdS — / ikapgdS. (24)
Sr

It now remains to insert appropriate test and trial functions.

3.6. Infinite element formulation

While the FEM is well suited for the analysis of structures, the simulation of unbounded domains is more
difficult to achieve. This means that in vibro-acoustics special care is necessary to simulate the response of an
unbounded acoustic fluid coupled to a vibrating structure. Various tools are available for this, among which
the best known are the boundary element method (BEM) with special non-reflecting boundary conditions and
infinite elements. Already developed in the late 1970s, the latter has gained remarkable popularity in recent
years and today several formulations exist. Reviews of the most commonly used formulations may be found in
Refs. [12,13], whereas a rather recent concept is given in Ref. [14]. Investigations of the Astley—Leis elements,
emphasizing radiation and scattering problems in an acoustic half-space, may be found in Ref. [15].

Compared to the BEM, a major advantage of the combined finite/infinite element approach is that the
infinite elements preserve the banded structure of the system matrices, enabling for extremely efficient solution
procedures. As a consequence, the infinite element approach may surpass standard BEM formulations in
terms of computational efficiency [16]. Additionally, the infinite elements formulation employed here may be
easily transformed to the time domain and with some slight modifications this method provides stable
simulations of transient exterior acoustics [17], whereas transient BEM formulations are known to behave
rather unstable.

The interior part €; is discretized with conventional elements, including the common polynomial shape
functions N; for the test and trial functions § and p, respectively, i.e.

P> piNi. (25)
i=1

where n is the number of generalized unknowns p, associated with the current finite element. The infinite
elements employed in this contribution build up on the so-called Astley—Leis elements, however with
modifications regarding the polynomial approximation functions in radial direction. These elements are based
on a Petrov—Galerkin scheme, i.e., complex conjugates of the trial functions are used as test functions.
Similarly to [9], the trial functions may be written in the form

p ~

n
pibiekH, (26)
i=1
where 7 is the number of generalized unknowns p; associated with the current infinite element and y is a phase-
like term. The function @; is defined by
1
& =-S;P; (27)
P

consisting of the base approximation S;, independent of the radial direction r, the radial approximation Py,
and an additional factor assuring that the radiation condition is satisfied. The subscripts j, k in Eq. (27) may be
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chosen such that the combination of the base and the radial approximation functions yields the correct
polynomial @;. The test functions may be written as

1< ,
g~ > pbiete, (28)
i=1

Using the complex conjugate of the oscillatory term in Eq. (26), these terms cancel out and conventional
numerical quadrature rules may be employed when integrating over an infinite element. The additional weight
D= /r)2 in Eq. (28) assures that the variational problem in Eq. (24) is well-defined [18].

The discrete version of Eq. (24) may then be written as

A()p=[K4 + (iw)C4 — 0*Mylp = {4, (29)

where K4, C4, and M are frequency independent acoustic system matrices and only have to be assembled
once during the simulation. These matrices are also referred to as inverse mass, admittance and compressibility
operator, respectively (note, in some literature the system matrices are denoted as acoustic stiffness, damping
and mass matrix, due to their counterparts in structural analysis). The vector p contains the unknown pressure
values, and f 4 is the load vector, representing the tire dynamics on the surface. For each excitation frequency,
the right-hand side vector is computed using the eigenvectors on the tire surface weighted with the
corresponding generalized coordinates (cf. Section 3.3) and the overall matrix is computed by summing up the
acoustic system matrices. In the interior part Q; the contributions to the system matrices are given by

K= / VN,;VN;dV, (30)
Qe
M= 1/c2/ N;N;dV, @31
QC
C,'/‘ = ,D/ OCN,'NJ' ds. (32)
i s
The right-hand side vector is computed from the normal velocities on the tire surface by
fi= —ia)/ puyN;dS. (33)
Sy
Contributions from an infinite element in the exterior Q, are given by
K= / (VD®; + Vo, D)Vo; dV, (34)
QE
M;=1/¢ / (1 = (VuVp)®:®;D dV, (35)
QE!
Qe
+ l/c/ a®;P;DdS. (37)
SE

R

Including a mapping with a/r = (1 — v)/2, where a is the distance from the infinite element origin to the base of the
infinite element and 2a corresponds to the origin of v [19], it appears that terms arising in the integral expressions of
Egs. (34)~(36) perfectly match the orthogonality property of the Jacobi polynomial P*# with o = 2 and f =0

1
/ l(1 — )’ PP dv = p;5y, (38)

where y; is a given constant and ;; is the Kronecker delta. Compared to infinite elements based on Legendre
Polynomials, this element type provides lower conditioning of the overall system matrix and leads to more
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efficient simulations, in combination with Krylov solvers, such as, e.g., the generalized minimal residual
method (GMRES), details are given in Ref. [16]. It should be noted that the method employed here assumes
the tire to be fixed in space, which yields a situation similar to a tire rolling on a drum. Infinite element
formulations including moving media may be found in Refs. [20,21].

4. Numerical examples

Since the stationary rolling analysis of tires is state-of-the-art, the following examples focus on the
eigendynamics of gyroscopic systems, simulation of transfer functions, description and analysis of surface
textures, operation of the tire on the road and sound radiation.

4.1. Eigendynamics of truck tire

To demonstrate the ability of the eigenvalue solver to handle large-scale problems, a truck tire with 140 700
degrees of freedom, 41 800 elements and 18 different material groups has been analyzed. The tire is rolling on a
plane road with 50km/h and is inflated with 0.9 MPa. For the eigenvalue analysis it is possible to compute
some eigenvalues near a given shift. Fig. 3 provides an overview of typical eigenforms at frequencies near 0,
360 and 720 Hz. The deformation represents the real part of the eigenform and red color marks the maximum
nodal amplitude. Remember, these complex eigenforms are not only vibrations but rather circumferentially
moving waves. The eigenforms with the lowest eigenfrequency are the well known bending modes of the belt,
while in the mid-range the lateral modes become more and more dominant. At high frequencies the relatively
soft parts of the tire, like the tread or the outer sidewall, have the highest amplitude.

4.2. Virtue of rotation

The simulations of the next sections were performed using a rather coarse model of a tire. The model
consists of three material groups for sidewall, belt and tread, respectively, with a total of 3800 brick elements
and 18000 degrees of freedom. The computation includes inflation with 0.2 MPa and displacement driven
contact with the road and has been carried out for the standing tire as well as for rotations corresponding to
40, 80 and 120 km/h.

Analytical investigations of a circular ring and measurements of a rotating glass [22] have shown that an
eigenpair of a standing object is split into two eigenpairs due to the gyroscopic effect. In this sense, the
rotational symmetric eigenforms like breathing modes are an exception. The eigenfrequency is increased or
decreased by the product of the number of waveform and the rotational frequency, while the two eigenforms
appear as counterrotating waves. In Fig. 4 an example for this effect can be observed. The two eigenforms with

128 Hz 372Hz 732Hz

Fig. 3. Typical eigenforms of a truck tire.
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Fig. 5. Influence of the speed on the eigenvalues of the tire (— Okm/h, - - 40km/h, --- 80km/h, --- 120km/h).

circumferential harmonic wavenumber n =8 are results of a tire without contact but rotating with
o = 31.7rad/s. The eigenfrequency of the related standing vibration would be f, = 230 Hz and the shift of the
counterrotating eigenforms can be approximated by

Af =+ = +40.4Hz,
2n

corresponding to the eigenfrequencies in Fig. 4. When the tire is in contact with the road, the affinity to a
circular ring is broken and as a consequence the straight split into two eigenforms hardly occurs. Fig. 5 shows
the 1200 lowest eigenfrequencies of a tire model, rolling on a road at different speeds. The main effect in this
case is that increasing speed decreases the common eigenvalue distribution in the spectrum. Occasionally a
gyroscopic split can be detected, when the contact state does not disturb the eigenmode.

4.3. Transfer functions

In this section examples of the frequency response of different nodes at the sidewall and the belt of the tire
are presented, where a single node near the center of the upper belt is excited with unit forces in all three
spatial directions, while the nodes of the contact patch are kept fixed. This simulates the setup of a point-
shaker experiment. The comparison of calculated transfer functions with measurements, which were
conducted by a laser Doppler vibrometer at given nodes with known excitation, may be used for validation of
the model. The locations of the nodes are depicted in Fig. 6. The transfer functions presented in Figs. 7-10 are
given in separate graphs for the vibrational magnitude in vertical (x) direction, driving (y) direction and axial
(z) direction.

Fig. 7 shows the response of the node at the upper belt where the forces are induced into the tire. One may
clearly identify the corresponding eigenmodes at the peaks of resonance and determine in which directions
they interact with the excitation. With respect to the response of a node in the front of the belt depicted in
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excitation in upper belt
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Fig. 7. Transfer functions of a node in the upper belt.

Fig. 8, it appears that the highest response of the belt modes can be observed in the frequency range up to
300 Hz. Above that frequency the amplitude drops. In contrast to this, the node in the upper sidewall in Fig. 9
has similar amplitudes at most eigenfrequencies, while the amplitude of the node in the lower sidewall, shown
in Fig. 10, increases with the frequency.
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Fig. 8. Transfer functions of a node in the front belt.
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Fig. 9. Transfer functions of a node in the upper sidewall.
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Fig. 10. Transfer functions of a node in the lower sidewall.

4.4. Characterization of surface textures

To get an appropriate frequency resolution in the discrete Fourier transformation, the window size of the
measurements has to be rather large. The longest distance of surface textures measurements, available at the
Bundesanstalt fiir Straenwesen, yield the following spatial data:

n, = 65536,
Ax = 0.5mm,
Jipnax = (mp — DAx = 32767.50 mm,

—1 — —
Sin = Ay | =3.052x 10 mm™",

where 7, is the number of samples, Ax is the sample length, A} the maximum wavelength, and /7, the
minimum spatial frequency (the resolution). The highest measurable frequency, according to Nyquist, is half

the sampling frequency

f;qax :JL: =5 —=1Imm™"
2 2Ax
Connecting the frequency in time and space with the velocity of the tire
f=u
results, for the example of v = 80km/h = 22222.2mm/s, in the frequency bounds
S min = 0.678 Hz

Foax = 22.3kHz.
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Fig. 12. Measurement (—) and Fourier synthesis (- - -).

Inversely one can say that for the frequency range of interest from 50 to 1500 Hz the spatial wavelength
spectrum for the excitation of tires at velocities of 40—150km /h is about 5Smm to 1 m. Texture components
outside this range have no influence on the sound radiation at the important frequencies of this model. Besides
this hard filtering in the frequency domain another filter is used to reduce the computational cost. The power
spectral density is examined to extract the frequency components with the highest energy assuming they have
the main virtue on the resulting vibrations. An example is shown in Fig. 11 for the 100 strongest amplitudes
marked with circles in the frequency range 50—600 Hz. In Fig. 12 a section of the microstructure of the road
and the reconstruction with the extracted components using Fourier synthesis is depicted. With this approach
one is not attempting to avoid the computation of how deep the tire will go into the grooves of the real texture,
since the frequency parts of the grooves have no importance.

4.5. Operational dynamics

Now the tire is subjected to the deterministic excitation of a split mastic asphalt and a concrete jute texture.
The 400 smallest eigenpairs are used in conjunction with the complete spectrum of 1106 harmonic excitations
between 100 and 850 Hz, depicted in Fig. 13. Since the rather coarse model investigated here may be analyzed
within reasonable computing time without reduction of the spectrum, all components are taken into account.

The matrices of generalized coordinates, being the participation factors of an eigenform in the operational
vibration associated with the excitation, are compared in Fig. 14, where the magnitudes of the complex matrix
entries are plotted. Both subfigures have the largest entries on the diagonal axis, where resonance occurs, while
more than 87% of the entries are smaller than 10~". This correlation shows that an excitation causes responses
of the eigenvectors with similar eigenfrequency. Also this could be another starting-point for the reduction of
computational cost. If a small matrix, that is moving over the diagonal entries, and the corresponding
excitation functions as well as the eigenpairs are used to get the operation in this frequency range, the results
can be superimposed afterwards for the full range with the advantage that the negligible entries in the whole
matrix of generalized coordinates may not have to be considered. Comparing the two different textures, the
magnitude of the peaks of split mastic asphalt is twice as large as of concrete jute texture. Besides this, the
main peaks occur at different locations of the diagonal axis.
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Fig. 14. Magnitude of entries in the matrices of generalized coordinates: (a) split mastic asphalt; (b) concrete jute texture.

Some snapshots at discrete timesteps of operational deflection shapes are shown in Fig. 15 for both textures.
The effective nodal amplitude is color coded in the given decibel scale. Looking more closely at the footprint,
one may identify the texture pattern moving to the left, while the tire is rolling to the right. The structural
amplitude of the tire on the split mastic asphalt is larger then on the concrete jute texture, which will result in a
higher sound pressure level. Another difference is the wavelength of the dominant eigenforms corresponding
to the expansion of the zones of similar color, showing that the split mastic asphalt has short waves equal to
high-frequency components. This is also recognizable in the spectrum of excitation in Fig. 13 showing the
correlation between input and output of the model.

4.6. Acoustic analysis

The sound radiation is computed based on the structural dynamics of the rolling tire. For the simulations
presented here, 400 eigenpairs up to a frequency of 822 Hz have been computed. The sound pressure has been



M. Brinkmeier et al. | Journal of Sound and Vibration 309 (2008) 20-39 35

il
WL ey

T
PR
oy
s
e
o, -10
e 15
A e -
sl
H erey e i
2 e
aalezses
t=0.0040s
£ XL
%) FATAL
Y e, ot L -35
‘::“‘.v,-—. 0L oteil Z

oletetees
WSSt ter

0
2 22

Velelssder

o,
Sereute
2AL
Seatress”

t=10.0000s t=0.0010s t=0.0020 s t=0.0030s t=0.0040s

Fig. 15. Operational deflection shapes on split mastic asphalt (upper row) and concrete jute texture (lower row)—effective nodal
amplitude in dB.

Fig. 16. Normal velocity at 642 Hz for concrete jute texture (a) and acoustic model with finite and infinite elements including the sound
pressure amplitude (b).

computed for a total of 1106 excitation frequencies between 100 and 850 Hz, obtained from the roughness of
the road surface (cf. Section 4.4). In this method the normal velocities on the tire surface were determined in
each frequency step by superimposing the weighted eigenmodes. The resulting system was solved using the
GMRES algorithm together with an incomplete LU factorization.

In order to analyze the influence of the mechanical excitation due to the roughness of the road, the acoustic
characteristics of the road surface remain unconsidered here, i.e. the absorption has been assumed to be zero
(o« = 0). Regarding the air, the usual fluid properties with density p = 1.225kg/m> and wave speed ¢ =
340m/s were adopted. The speed of the tire is 80 km/h.

Fig. 16(a) depicts the normal velocity of the tire at 642 Hz as a result of the excitation by the concrete jute
texture. A section of the acoustic finite/infinite element model with a total of 17458 degrees of freedom as well
as the sound pressure distribution at 642 Hz are shown in Fig. 16(b).

Fig. 17 depicts the sound pressure amplitude for the excitation of the tire due to a concrete jute texture,
evaluated at a field point located in the exterior part of the FE-model. According to the commonly used test
set up when measuring the pass-by level, the field point is located at a height of 1.2m and a distance of
approximately 6.5m to the tire center. For these simulations, however, the tire is spatially fixed. The dashed
line in Fig. 17 represents the sound pressure amplitude in dB, while the solid line stands for the data in dB(A)
using a third octave filter. The filtered data has a maximum of the acoustic pressure level in the spectrum
around 400 Hz. The sound pressure amplitudes are very low in the lower frequency range due to the
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Fig. 18. Sound pressure level for different field point locations: FP 1 (—); FP 2 (- - -); FP 3 (----); FP 4 (---); FP 5 (-+-----).

A-weighting. Note, that the results given in Fig. 17 may not be directly compared to experimental data from a
pass-by test, since only the mechanical excitation due to the road roughness is considered.

The sound pressure evaluated at different field points is shown in Fig. 18. There, the field points are located
on an arc, with a radius of 6.5m, 1.2 m above the road surface, cf. Fig. 18, where the tire is rolling towards FP
3. For all field points, the results are given in Fig. 18. The maximum sound pressure level occurs in the
frequency band around 400 Hz. The differences among the third-octave filtered sound pressure level for the
different fieldpoint locations vary from roughly 7 to 1.5dB(A) at 400 Hz. The largest weighted sound pressure
level of 61.7dB(A) occurs at FP 4.

A comparison of the two different road textures, namely a concrete jute texture and a split mastic asphalt, is
shown in Fig. 19. In the lower frequency range, i.e. up to 315Hz, only small differences occur. At 400 Hz,
however, the difference in the sound pressure amplitude increases, where the sound pressure for the split
mastic asphalt is about 2 dB(A) higher, i.e. representing the more noisy road surface (not considering acoustic
impedance). The largest difference with approximately 3 dB(A) occurs at 500 Hz.
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Table 1
Sound pressure level in the third octave band for the tire/road noise simulations

Frequency (Hz) Sound pressure at field points (dB(A))
SPLEp §15iFP 1 SPLgp 3 SAPVI;FP 3

100 25.54 26.94 28.88 27.77
125 39.05 38.71 35.74 35.76
160 40.70 41.00 45.05 44.87
200 42.35 41.71 36.70 36.97
250 52.20 52.46 49.15 48.75
315 57.72 57.75 54.08 54.37
400 60.94 61.14 60.75 60.60
500 53.44 53.30 49.92 49.58
630 48.99 48.41 50.21 50.02
800 54.62 52.94 52.88 49.56

In Section 4.5 it has been discussed that large contributions to the right-hand side in Eq. (29) exclusively
arise from eigenpairs in the vicinity of the excitation frequency (cf. Fig. 14). In order to save computational
costs, only selected eigenpairs, close to the excitation frequency, may be considered when analyzing the
dynamic response and the sound radiation. Sound pressure levels evaluated at two different field point
locations are given in Table 1. In this simulation the sound pressure level was computed using contributions to
the right-hand side from all 400 eigenvalues (denoted by SPL) and also neglecting eigenvectors outside a band
of £50 Hz around the corresponding excitation frequency (denoted SPL). While only small differences occur
up to 630 Hz, it appears, that at higher frequencies around 800 Hz, the solution using only eigenmodes close to
the excitation frequency deteriorates from the solution using the full set of eigenvectors. Hence, it seems
necessary to enlarge the set of considered eigenpairs at higher frequencies.

5. Conclusions

A physically based computational model for the analysis of noise radiated from rolling tires has been
presented in this contribution. The fundamentals of the underlying numerical methods for the study of tire
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dynamics and the sound radiation have been described. The contribution focuses on the representation of the
overall computational strategy and the employed numerical methods with respect to the simulation of tire/
road noise. The overall model has been implemented adopting advanced state-of-the-art simulation
techniques. This enables a detailed analysis of the tire/road system, rendering goal-oriented investigations
of certain effects of the noise generation and radiation possible (e.g. constructional parameters of the tire,
driving velocity, road roughness, impedance, etc.).

Simulations of the tire/road noise have been presented for frequencies up to 850 Hz and rather coarse
discretizations of the tire/road system have been used. In order to simulate the tire/road noise within the
relevant frequency range up to 1.5Hz in a reliable way, the discretizations have to be refined. This further
increases the demands regarding the efficiency of the methods used in the computational model.

Priority of future work is given to the appropriate validation of the current model. Therefore, measurements
of different tire models rolling on a drum will be performed, monitoring the tire vibrations as well as the
radiated sound. These will be compared to simulations with the same assembly as the real tires.

The present work demonstrate the computability of the suggested approach. The next step will focus on a
sequential refinement of the finite element model based on the results from laboratory experiments. Additional
effects, such as frequency dependent material behavior, slip—stick contact, and treat-pattern impact, will be
addressed in a subsequent step.
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